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Abstract

In the present paper, efficient numerical algorithms for elastoplastic analysis of shell-like structural components will
be proposed employing nonisothermal, realistic, highly nonlinear hardening responses. The closest point projection
integration algorithm is presented using a Reissner—Mindlin type kinematic shell model, completely formulated in
tensor notation. Further, a consistent elastoplastic tangent modulus is derived, which ensures high convergence rates in
the global iteration approach. The integration algorithm has been implemented into a layered assumed strain iso-
parametric finite element, which also enables geometrical nonlinearities including finite rotations. The nonisothermal
elastoplastic response of a circular cylindrical shell and a box column under axial compression is analysed. Under the
assumption of an adiabatic process, the increase in temperature is computed during elastoplastic deformation. Ro-
bustness and numerical stability of the proposed algorithms are demonstrated. © 2001 Elsevier Science Ltd. All rights
reserved.

Keywords: Shell structures; Finite element analysis; Elastoplasticity; Nonisothermal hardening responses; Integration algorithm;
Tensor formulation

1. Introduction

The use of thin shells as structural elements in many engineering applications is advantageous due to
their high strength to weight ratio. Experimental data and approximate theoretical predictions of defor-
mation processes of metal structures under different types of loading conditions have been presented in a
large variety of literature in recent past. Therein, the crushing problem of thin-walled structural elements
has attracted considerable attention because of their ability to absorb vast amounts of energy during in-
elastic structural collapse (Reid, 1993; Reddy and Zhang, 1993; Wierzbicki et al., 1994). Also cyclic elas-
toplastic responses have been investigated occasionally. As presented in the literature, special interest is
directed mainly to the determination of the load-deflection characteristics, evaluation of stress profiles
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along cross-sections and amounts of energy absorbed. It has been recognized that especially nonisothermal
material descriptions play a significant role during inelastic deformation processes (Lehmann, 1987; Sze-
pan, 1989).

An accurate modelling of elastoplastic material responses together with geometrical nonlinearities
represents the key for describing deformation processes in realistic manner. Employing thermomechanical
coupling as under consideration can significantly contribute to the accuracy of numerical simulations. The
influence of temperature on the material behaviour may be encompassed in the evolution laws describing
hardening responses. Such hardening rules formulated by differential equations are usually applied (Leh-
mann, 1987; Armstrong and Frederick, 1966; Chaboche, 1986; McDowell, 1992), where the temperature
effect has been embedded in the corresponding model parameters. In order to integrate the elastoplastic
constitutive model and to obtain the actual state of the stress and of the internal plastic variables, many
efficient computational strategies have been developed lately (Auricchio and Taylor, 1994; Auricchio and
Taylor, 1995; Chaboche and Cailletaud, 1996; Doghri, 1993; Hartmann and Haupt, 1993; Hopperstad and
Remseth, 1995; Montag et al., 1999; Sori¢ et al., 1997a,b; Sori¢ et al., 1998). Therein, numerical modelling is
mainly performed for two dimensional plane stress and plane strain problems (Doghri, 1993; Hartmann
and Haupt, 1993; Hopperstad and Remseth, 1995). An algorithm for modelling of nonlinear hardening
responses describing cyclic plasticity of shell structures has first been proposed in Sori¢ et al. (1998).

The present paper is concerned with the numerical modelling of nonisothermal hardening responses in
elastoplastic analyses of shell structures employing a Reissner—Mindlin type kinematic model. The material
model employs a highly nonlinear hardening response (Lehmann, 1987) with temperature dependent ma-
terial functions (Szepan, 1989) obtained experimentally for mild steel. Small strains and an associative flow
rule are assumed, and an adiabatic process is considered. The integration algorithm, completely formulated
in tensor notation, is based on the closest point projection strategy as proposed in Sori¢ et al. (1997a), in
conjunction with a derived consistent tangent operator.

The computational algorithm, based on the simulation strategy presented in Kratzig (1997), has been
implemented into a four-noded isoparametric, assumed strain layered finite shell element (Basar et al.,
1993). The finite element formulation allows modelling of material nonlinearities combined with geomet-
rically nonlinear responses considering finite rotations. Efficiency of the proposed algorithm is demon-
strated by several numerical examples. Thereby, cyclic elastoplastic responses of a circular tube as well as of
axial compression of a cylindrical shell and a box column are considered. Assuming an adiabatic defor-
mation process, the increase in temperature is monitored during the elastoplastic collapse simulated. All
computations have been performed within the finite element software FEMAs (Beem et al., 1996) developed
at the Ruhr-University Bochum.

2. Elastoplastic material model
2.1. Thermal hardening properties

The present material model, described in detail in this section, employs an associative flow rule with
evolution laws for hardening variables as proposed by Lehmann (1987) in which the material functions are
experimentally determined (Szepan, 1989). The total strain rate j,; of this concept is decomposed into the
reversible elastic part 77, the irreversible plastic part 75 and the thermal part y'l.Tj, as follows

By = 75 + 95 + 7y (m)

As customary, the Latin indices herein take the values 1, 2 and 3, in contrast to the Greek indices used in
the later considerations, which take the numbers 1 and 2. The rate of stress tensor is defined by the relation
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G.i/ = Cijkl’?klv (2)

where C/¥ abbreviates the constitutive tensor describing the material response.
The von Mises-type yield condition may be written in the form

F(d",p”,a,T) = (87 — p") (S,-j — p;j) —k*(a, T) <0, (3)

where p” denotes the back stress tensor components describing kinematic hardening, and a is the internal
isotropic hardening variable. T denotes the process temperature, while S¥ and p'/ stand for the deviatoric
components of the stress and back stress tensors. According to Szepan (1989), the following isotropic
hardening model is adopted.

kz(a, T) =b —|—b2a+b;(1 —eb“”), (4)

where by, b,, by and b, are temperature dependent coefficients. The plastic strain rate is expressed in an
associative form

-0F (d¥,p",a,T)

K
Vij = A doi ) (5)
where A represents the plastic multiplier. The thermal strain components are given as

with ot as thermal expansion coefficient depending on temperature (Szepan, 1989), and with J,; representing
the Kronecker delta. Temperature changes during the elastoplastic deformation process are expressed by
the relation

P S (g i)

T= ep (S P )Vija (7)
in which ¢ denotes the dissipation function, while ¢, and p are the specific heat capacity and the mass
density, respectively. The values ¢, and p depend on the actual process temperature, while ¢ is assumed to
be constant (Szepan, 1989). Temperature changes are obtained from the balance equation for the remaining
energy as shown in Lehmann (1987). Herein the terms with the second mixed derivatives of the specific free
enthalpy which describe the coupling with the nondissipative external and internal processes are neglected.
Also, heat flux is neglected because an adiabatic process is considered. The kinematic hardening component
is expressed by the following nonlinear evolutionary equation (Lehmann, 1987)

p/ij — g?pij _ Xp/ij ,y[l)k,yl[:l (8)

with ¢ and y as material functions. The material function y is described in dependence on the process
temperature by a polynomial expression in Szepan (1989), while values of ¢ may be obtained from the
following nonlinear relation

c=rc + C2€763A. (9)

Herein ¢y, ¢,, ¢3 are again temperature dependent coefficients, and 4 denotes the second invariant of the
back stress deviator

4= plijp;j' (10)

The internal variable in Eq. (3) describing the isotropic hardening phenomenon is assumed in the form

a=(S7— p)P. (11)
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2.2. Further constitutive formulations

Introducing the relative stress deviator
" =8"—p (12)

and its second invariant

1,
S = 51"y, (13)
the yield criterion can be rewritten as
F=2J,—k(a,T)=0. (14)

The components of the relative stress deviator are expressed in terms of the relative stress components by
the relations

" = i, (15)

’7:7 = M,-jkmkla (16)
where ,uf(", and p;;, represent the following transformation tensors (Sori¢ et al., 1997a)

= 0]~ laa”, (17)

Mo = Airdj — ;a5 (18)

and the relative stress tensor components are defined as
W= =gl (19)
In Eq. (16), a;; and a4V are the covariant and contravariant components of the metric tensor (Basar and

Kratzig, 1985). Analogous to Egs. (15) and (16), the deviatoric components of the stress and the back stress
tensors are introduced as

SV = l‘;(jzo'k[’ Sy = Mi/klakl’ (20)
P = Pl = ™. (21)

Connecting Egs. (13), (15), (16), (20) and (21), the second invariant of the relative stress deviator takes the
following form

S = %#{jkln[jnkl' (22)

According to Eq. (5) and after differentiation of the yield function, the plastic strain rate may be then
expressed in the form

“/zp, = 2/;41,-]‘1{1’7“- (23)

By means of Eqgs. (11)—-(16) and (20)—(23), the rate of the isotropic hardening variable can be broken down
in terms of the second invariant of the relative stress deviator, namely

a =4/, (24)

or, according to Eq. (14), in terms of the isotropic hardening function

a=2ka,T). (25)
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The expression for the back stress tensor components can finally be transformed into the following relation
Pl = 2en” — 1p"\ 7Y (29)

in which
P =20k (27)

holds with k as the isotropic hardening function & = k(a, T). After comparison of Eq. (7) with Eq. (11) and
by means of Eq. (25), the temperature rate may be rewritten in the following form

. 2IEkR?
T = tk ) (28)
Cpp
During the elastoplastic deformation process the following consistency condition must be fulfilled
. oOF .. OF .. OF oF .
F=—6"+——p/+—a+-——T=0. (29)

Gl opY Oa oT

Finally, the loading/unloading criterion is expressed by the Kuhn-Tucker condition (Simo and Hughes,
1998) as follows

F(O'ij7 pij7 a7 T) < 07 i > Oa )“F(O-ij7 pij7a7 T) = 0 (30)

3. Numerical formulation for Reissner—Mindlin shell kinematics
3.1. Integration algorithm

In this section, a closest point projection scheme will be developed for integration of the nonisothermal
elastoplastic constitutive model including the nonlinear hardening functions on material point level, with
fastest possible convergence. The updated values of the state variables ("6”,"p”,"a,"T) at the end of the time

+

step ("'¢,"¢) have to be found for given values of the incremental strain tensor components "y,; and the state
variables (""'g” "~1pl n~lg "~1T) at time "~!z. In the following numerical formulation, the rates of all
measures are replaced by their incremental values noted by ( + ) . For notational simplicity, the sign plus

over the plastic multiplier, denoting its increment, is omitted.
The updating algorithm relies on the following relations in which all measures again are expressed by
tensor components:

n n— n+
Vi = lVij + v (31)
"y ="+ 2" A", (32)
" nel 2MAEMK?
T=""T+——, (33)
"(cpp)

+
”V;l; — nfly;i 4 nflaTnTé (34)

ijs
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ngii — n=1 Cijkl ("Vkl _ n—lyil _ nflyzl) — n=1ijkl <";£1 + ”;}a) , (35)
"a=""a+ 2"k, (36)
”p"/:”*lpif+2”2”’lg’1nij—2;{"/1”knpij, (37)
il = il i (38)
"k ("a,"T) = by + by"a+ b (1 — "), (39)
"F =20y — i ("a,"T) <0, "A=0, "A"F =0, (40)

To avoid severe computational difficulties, it should be noted that the elastic material constants, the
thermal expansion coefficient as well as the kinematic hardening variable ¢ are strictly computed at the end
of the previous time step "~'# and are then assumed as constant during the actual time step. If the hardening
variable ¢ is taken at time "z the difficulties arise because an explicit expression for the components of the
relative stress tensors can not be derived in terms of the trial state which is necessary for derivation of one
scalar nonlinear equation in the plastic multiplier " 4. For the Reissner—Mindlin type shell kinematics (Basar
et al., 1993), all stress and strain measures are described by eight tensor components, ¢ € R®, y € R® and
p € R®. In contrast to the standard matrix notation, all nine deviatoric components of the stress and back
stress tensor, § € R’ and p’ € R’, which are expressed by relations (20) and (21), are explicitly included in
the present formulation.

According to the closest point projection computational strategy and in view of Eq. (35), the predictor
phase is approximated by

na?rpial = ”*10.06/7’ + nflcotﬁ&n;;ém (41)
nafl?’ia] — n71653 4 2n71Ga58 n:;BS' (42)

As may be observed, the in-plane components presented by Eq. (41) and the shear components in Eq. (42)
are expressed separately in order to achieve high numerical efficiency (Sori¢ et al., 1997a). After onset of
plastification, the stress components at the end of the time step are obtained by the relations

. + +
naaﬁ _ nazxﬁ _ n—lcaljyb (n,yg(S 4 n'}/,};;) ’ (43)

trial

+
n_03 __ n_03 n—1 den, p
0" = Otjal — 2 Ga Ves: (44)

By use of Eq. (23), the plastic strain increment at time "¢ can be expressed by the following tensor com-
ponents:

+ X

"ap = 2" A", (45)
o 3

b =2")as" n". (46)

+
The additional transverse normal strain component "}%; is determined from the incompressibility con-
dition "?) = 0, as follows
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+
n.p

V33 = 72”1#&[3«/(5‘1&[{”

. (47)
In view of Eq. (34), an expression for the thermal strain components is obtained as

+ 26"710(]""/1"1(2

n, T
Yup = — 7 Oup- (48)
! (cop)
Inserting Eqs. (45) and (48) into Eq. (43), and Eq. (46) into Eq. (44), yields
i . n—1 nkZ
n_of _ n 0(/?' _ 2;1/"Ln71C1/3ﬂ/h o onpd 6 ot 5P 49
o O-trlal (:up/hy() n + " (Cpp) Vi B ( )
nO.aG _ nazfial _ 4n}vn—lGnna3. (50)
Applying Eq. (37), the back stress tensor components at time "¢ can be broken down as
npocﬁ :an—lpocﬁ_|_2an)anlgn’70z/§7 (51)
np(53 —_ anflp(B + 2an)vn71;nn(33 (52)
in which "R is introduced as auxiliary variable given by
1
R=— 53
1+ 24"k (53)

Now, substituting Egs. (49) and (51) into Eq. (38) we obtain

5 "K , 28 Lo k),
n,y0 5a5ﬁ K of : ) _ 2 n xﬁ_ _ n—1 Cocﬁpp 54
n < P 17" Ays 2(1 + 2K, ")u"ilG) Mirial n (Cp[)) ( )

with the abbreviations

27K, "1 G(1 — 2v)
Ky = 55
'3 + 27K G) (1 — ) (55)

2
K, — ‘ 56
2 1 —|—2an)»,"71§ ( )
The trial relative stress tensor components "%  are defined by
"Mt =" —"R" " (57)

In the program coding of the procedure presented above, the following inverse relation obviously will be
particularly useful (Sori¢ et al., 1997b)

n

° n o - NG} K, o)
(5},523 — Kla ﬁaw) = 5zx5ﬁ — maaﬁa . (58)

Using Eq. (58) and by means of Egs. (38), (50), (52) and (54), the explicit expressions for the components of
the relative stress tensors are obtained in terms of the trial state

s an—la n;bnkZ .
nof nAot/? n 0 T n—lcyogs 59
n 70 ( Nirial " (Cpp) ) (59)
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5 1
n, 03 0 53
) ' 60
1 1+ 2")&(”R”*1g + 2n71G) Migial» ( )

where the transformation tensor "Ajf is broken down in the form

1 47371G(1 — 2v)
n acﬂ — o ﬂ » of 1
® ST r R e+ 2710) | % T B ) 130 = W + 2R 1) (61)

and "5 is defined by

trial
n,o3 __ n_03 npn—1 03
Mirial = Otrial — R p- (62)

After inserting Egs. (59) and (60) into the yield criterion (14), the following nonlinear scalar equation is
obtained

"F = 2"_]2 (”*1; ﬂR’ n)” nn?rligal’ nnfsial) - kz(”a7 nT) = 07 (63)

which has to be solved for ”A. In our case of initially isotropic material, the proposed method yields only
one scalar nonlinear equation (63) following the lines proposed recently by Auricchio and Taylor (1995),
Hartmann and Haupt (1993), Chaboche and Cailletaud (1996). Eq. (63) is solved by Newton’s iteration
method, and thus

, . @
a0 =0 _ _E7 (64)
(d_F)(l)
dz
where (i + 1) abbreviates the current iteration step, and (dF/dA)" is calculated by
dr (@) FUO _ -1
di 20 _ 6=

During the iteration process of the closest point projection scheme, the unknown auxiliary variable "R must
be computed, which is performed also numerically by means of the following nonlinear relation obtained
from Egs. (36), (39) and (40)

"la —a+24[b + bra + bs(1 — e")] = 0. (66)

For a given value of A this equation has to be solved for an isotropic hardening variable a in each iteration
step by applying the local iteration scheme. After determining «a, the values of the variable "R and the
temperature "7 can be computed.

Then, after determination of the plastic multiplier, the updated value of the stress tensor as well as all
internal variables can be calculated. To avoid spurious unloadings, all state variables will be updated with
respect to the previous equilibrium state. In order to preserve numerical efficiency of the global iteration
strategy on structural level, an elastoplastic tangent modulus consistent with the integration algorithm has
to be derived and applied thereby.

3.2. Consistent elastoplastic tangent modulus

This elastoplastic tangent modulus is gained by linearization of the updated algorithm presented in the
previous section. In the following presentation, the left upper index n referring to all state variables at time
"t will be omitted due to further notational simplicity. Inserting Eq. (41) into Eq. (49), and after differ-
entiation and replacing the trial stress by the actual stress tensor components, the following formula is
obtained
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do*¥ = i dy ; — (D A é ork C“ﬁ”") dj— 2D dy? — 214 o 2. (67)
CpP ' Cpp
Analogously, by differentiation of Eq. (50) and further use of Eq. (42), we obtain
do® = 2Ga™ dy,; — 4G di — 4G dn™. (68)
Differentiation of Eq. (4) leads to
dkz(a,T)f%—kzd —i—aa—szdT (69)

After some suitable formulae manipulations and formation of derivatives, the following relations for the
differential of the isotropic hardening variable and of the actual process temperature are delivered

da = 4J,d) + 45.dJ, (70)
¢
47 = —da. (71)
Cpp

Forming the derivative of the yield function and by use of Egs. (70) and (71), an alternative form of the
consistency condition can be obtained, namely

ds = K;di, (72)

where

'\kZ 14 ok?
2‘]2( Oa +o (_)

cpp OT

K; = . (73)
2 £ k2
1-2(E+ %)
By use of Egs. (69)—(72), the isotropic hardening function will be expressed as
ok & Ok
di*(a,T) =4 J> + 7K3)dA. 74
@) =45+ 5 5 )ik 74)

The differential of the back stress tensor components dp* and dp*, obtained from Eq. (37) by means of
Egs. (73) and (74), may be expressed by the following relation

dp” = (27'0n" — Kazp”) T 2 Tt (1 - Ks)de” (75)
with the abbreviations
1—i(Ey e
Ky =2k ( e ka) , (76)
-2 (® 4 L)
1+ 2yk
Ks=—7 "t . (77)
1+ 2A( L+ xk)
Differentiation of Eq. (38) yields
dy*? = de* — dp*, (78)

dp? = do” — dp”. (79)
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Furthermore, inserting Eqs. (74), (78), (79) and (75) into Eqgs. (67) and (68) delivers

do = B (C% dy,, — D d2), (80)
do” = K¢ (a™ dyy — L7 d2), ®1)

where the following abbreviations are introduced

, 1 4GKsA(2v — 1)
BY = — |50} — sa” 82
10 1+4GK51[ 1% T AGKsA(v+ 1) — 3 — )P (82)
; ; 4J,Eay CHPrr
Dccﬁ — Ciﬂ}’bﬂy&cl‘ﬂs + 250;5(2 ok (83)
’ cpp(l—ZvE)—Zvé(a—T
, , K4)Ly ,
V= ijy A i
L 2K5<17 +1+2;¥ka ), (84)
2G(2ypkA+1
e (27k2 + 1) (85)

T 2k 1 — 4GA(2KsiC — 2pki— 1)

The differential of the plastic multiplier d/ in Egs. (80) and (81) must be expressed in terms of the strain
tensor components. After formation of the derivative of the yield functions and by use of Egs. (78)—(81),
(75) and (22), an explicit expression for the plastic multiplier is obtained as follows:

- KS uﬁ;cAvB?:; Cimanh 2K5K617£3

di= dys + ————=—dy, 86
K3 +H1+2H2 V'0+K3 +H1+2H2 Va3 ( )
with
Hy = s (KsBZD" + 21 ), (87)
Hz = Qyp (1{5[<6La(3 + Mﬁ)f’llﬁ, (88)
ij Ks i~ g ij ij
ey (@710 — Kazp?). (89)

Finally, substitution of Eq. (86) into Egs. (80) and (81) yields the following relationships between the stress
and strain differential components

de* = ng"'"; dy,; + 2C§£*3 dy,s, (90)
do™ = CL°dy,5 +2CH7 dy,s, (91)
which then deliver the tensor components of the consistent elastoplastic tangent modulus

Kty D BIECEm1on
Ks+H, +2H, )’

Céxgwi _ B:f (CH;"M _

o rypd 03
e L i (93)
cp Ky +H, +2H,’
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o3 Rk ERYS Ay
:uﬁlde Bénc n

C3" = —KsK, 94

ep 56 K3 +H1 ¥ 2H2 ) ( )
K, 2KsKoL7n?

B3 — Do [ e 586 ) 95

P 2 4 K; + H, +2H, ( )

It is straightforward to verify that the tensor components Céfg" are unsymmetrical with respect to the couple
of indices (i j) and (k /), which has its origin in the nonlinear kinematic hardening model as shown in
Auricchio and Taylor (1995), Chaboche and Cailletaud (1996), Hartmann and Haupt (1993), Hopperstad
and Remseth (1995). For the evaluation of the stiffness matrix, the unsymmetrical tangent operator will be
symmetrized according to the following relation (Sori¢ et al., 1998)

sym il = H(Ct + clir) (96)

without losses of physical properties but with some disadvantages in speed of convergence.

4. Numerical examples

The integration algorithm in conjunction with the consistent tangent modulus presented in the previous
sections has been implemented into an assumed-strain layered finite element (Basar et al., 1993) within the
finite element software FEMAS (Beem et al., 1996). By using this highly modular software code, numerical
simulations demonstrating excellent performances of the proposed algorithm have been executed. To im-
plement the material model into the finite element formulation used in this paper, we evaluate the material
tensor by numerical integration over the shell thickness /

. h/2
B = / (&)'cMdg, n=0,1,2,3,..., (97)

—h/2
where Cijkl represents the consistently linearized constitutive tensor of layer L, and & is the thickness co-
ordinate. The layers are defined by the integration points. In this computation 10 integration points are
used in thickness direction. The deformed shell continuum is described by five independent variables, three
displacement components and two rotations, which are approximated by standard bilinear interpolation
functions (Basar et al., 1993). Material nonlinearity was combined with the modelling of geometrically
nonlinear responses assuming finite rotations. For tracing load—displacement curves, Newton—Raphson
and Riks—Wempner—Wessels iteration schemes, both enhanced by line search procedures (Montag et al.,
1999), were applied. For the constitutive model presented, the material parameters, obtained experimen-
tally for German mild steel St37.12, are taken from Szepan (1989). The Young’s modulus of elasticity £ and
the Poisson’s ratio v at the initial temperature of 25°C (298.15 K) have the values of £ =212 GPa
and v = 0.285. The initial yield stress is oy = 240 MPa. All material parameters depend on the temperature
and they are changed during the deformation process. Computations are carried out at different initial
temperatures, whereby the temperature changes are considered assuming adiabatic deformation processes.

4.1. Circular tube under torsion

A clamped circular tube subjected to torsion is analysed as first example. The whole cylinder is dis-
cretized into 20 x 20 elements, as shown in Fig. 1 presenting the geometry, loading and finite element mesh.
The applied twisting moment produces a shear strain amplitude of +0.03 at the free end of the cylinder. In
order to test the accuracy of the numerical algorithm, the stress—strain curve presenting one hysteresis loop,
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Fig. 1. Geometry and finite element mesh for a circular tube.

Shear stress T [MPal]
A

Shear strainy

I I S N I I I N N E—
—

-0.08 -0.015 0 0.03

-60

-120

C present algorithm
-180 — — — Szepan (1989)

Fig. 2. Shear stress versus shear strain at free end of a circular tube.

computed at the initial temperature of 400°C, is compared with results of experimental investigations
obtained in Szepan (1989). As may be observed from Fig. 2, excellent agreement of the two solutions is
exhibited. At the end of a full cycle, a temperature increase of 6.2°C has been evaluated.
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4.2. Axial compression of a cylindrical shell

As second example, a thin vertical cylinder is considered, clamped along the bottom circle and com-
pressed on the upper free boundary by an increasing line load with the reference value of go = 1 N/mm.
Employing symmetry, one quarter of the shell is discretized by 20 x 80 finite elements. The loading, geo-
metry and finite element mesh are shown in Fig. 3. Computer simulations have been performed for four
different initial temperatures, of 25°C, 100°C, 200°C and 400°C, wherefrom load-displacement curves have
been plotted. The load factor scaling the reference load versus the axial displacement on the upper
boundary is presented in Fig. 4 for various initial temperatures. All curves demonstrate the expected
buckling problem. The cylinder collapses at a limit point where folding has been initiated, which is followed
by unloading and shortening of the shell. The folding progresses to the axisymmetric buckling mode in the
region close to the clamped bottom end. The numerical simulation of the deformation process in the post-
failure range was limited by the first contact between two consecutive buckles of the cross-section. As evident
from Fig. 4, the limit point decreases with the increase of the initial temperature, and in the post-failure
range all curves tend to join. The deformed configuration at the response position noted by A in Fig. 4
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Fig. 3. Geometry and finite element mesh for axially compressed cylindrical shell.
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Fig. 4. Load-axial displacement curves for various initial temperatures for the top end of a cylindrical shell.
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for an initial temperature of 25°C is depicted in Fig. 5. At the same load level, the plastic zones throughout
the deformed shell thickness for four different initial temperatures are shown in Fig. 6, where the layered

T=25°C T=100 °C T=200 °C T=400 °C

Fig. 6. Spread of plastic zones throughout shell thickness for various initial temperatures for the load level point A.
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Fig. 7. Temperature increase along the outer shell generatrix for various initial temperatures for the load level point A.
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shell sections are plotted only in the regions of plastic actions. It can be easily seen that the minimum plastic

region is associated with the largest initial temperature.

As well known, temperatures increase during elastoplastic folding processes. The changes of temperature
along the outer shell generatrix for various initial temperatures, for the load level of point A in Fig. 4, are
presented in Fig. 7. The temperature distributions are plotted along the outer shell generatrix of the un-
deformed shell configuration. The largest increase in temperature is associated with the lowest initial
temperature, and thus the least temperature increase is exhibited at the largest initial temperature. As
expected, the largest increase in temperature is produced in the plastic folding regions undergoing large

plastic deformations.
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Fig. 8. Geometry, loading and finite element mesh for axially compressed rectangular box column.
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4.3. Axial compression of a box column

As last example, axial compression of a rectangular box column will be presented. The column is
clamped along the lower boundary and subjected again to the reference compressive line load of go = 1 N/
mm along the upper end, which will be increased during numerical simulation. The cross-section of the box
column, identical with the cross-section of the cylinder considered in the previous example, is chosen in
order to compare their deformation responses. Thus, the axial stiffnesses of the box and cylindrical columns
are the same. The geometry, loading and finite element mesh are shown in Fig. 8. Considering symmetry
again, one quadrant is modelled by a finite element mesh of 20 x 80, and the computation has been per-
formed only for an initial temperature of 25°C.

The deformation path for one of the corner points on the top end is compared with the curve related to
the cylindrical shell in Fig. 9. As obvious, the limit point level on the load—displacement curve of the box
column is lower than that one of the deformation response of the cylinder. In the post-buckling range, both
curves tend to join. The deformed configuration for the load level point A in the diagram of Fig. 9 is
presented in Fig. 10. For the same load level, the plastic zones on the outer column surface are plotted in
Fig. 11.

The temperature increases compared with those values obtained for the cylindrical column, again for the
same deformation position point A and for an initial temperature of 25°C, is presented in Fig. 12. The
temperature distribution for the box column is plotted on the undeformed configuration along two lines of
the outer surface, one close to the corner, and the other one close to the symmetry plane of the surface
which buckles inwards. It shall be emphasized that there is only a slight difference in temperature increase
between the surfaces buckling inwards and outwards. For the cylindrical shell, the change of temperature
relates to the outer shell generatrix. For the box girder, the largest increase in temperature occurs close to
the corner, in regions undergoing gross plastic deformations. The least temperature increase is along the
symmetry plane, where the plastic deformations are significantly smaller. The maximum temperature in-
crease for the cylinder is slightly below the maximum temperature computed for the box column.

Load factor
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L 96
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- 64
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F32
A |
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Axial compression in [mm]

Fig. 9. Load-axial displacement curves for the top end of a box column and a cylindrical shell.
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Fig. 10. Deformed configuration of a box column for the load level at point A of the load—displacement curve.

5. Conclusion

An efficient computational strategy for modelling of nonisothermal elastoplastic behaviour of shell and
shell-like structures, employing a rather realistic material model with highly nonlinear isotropic and
kinematic hardening responses, has been presented. The von Mises-type yield condition expressed in
space of stress and temperature, with the assumption of small strain and associativity of the flow rule,
has been adopted. A closest point projection algorithm for Reissner—Mindlin type kinematics has been
successfully applied. The tensor formulation used allows all nine stress deviator components to be ex-
plicitly included in the formulation, which turns out to be an advantage over the classical matrix no-
tation. The derived elastoplastic tangent modulus preserves quadratic convergence rates in the global
solution procedures.

Robustness and numerical stability of the proposed algorithms are demonstrated by three numerical
examples. The accuracy of the computational procedure has been tested first by comparing the computed
stress—strain curve with real experimental data for a circular tube subjected to torsion. Then, influences of
initial temperatures on the nonisothermal elastoplastic behaviour of the cylindrical shell under compression
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Fig. 11. Plastic zones on the outer column surface for the load level at point A of the load—displacement curve.

are analysed. Assuming adiabatic deformation processes, the increase in the temperature is evaluated and
monitored. The increase in temperature slows down with the increase of the initial temperature. The
nonisothermal elastoplastic response of the compressed circular shell is finally compared with the defor-
mation process of a box column with same axial stiffness. The maximum temperature increase for the
cylinder is slightly below the maximum value associated with the box column. The increase in temperature
along the symmetry plane of the box column is significantly smaller than that one computed along the
corner.

The numerical analysis of the temperature increase shows clearly that the largest temperature in-
crease occurs in regions undergoing gross plastic deformations, as expected. Clearly, final judgements
on the accuracy of the numerical simulation presented may be given only after comparison of the
computed results with real experimental data, which do not exist. However, the accurate and efficient
modelling of elastoplastic deformation processes of shell-like structural components, employing real-
istic nonisothermal material hardening responses, can significantly contribute to numerical crash
simulations and to the correct prediction of energy absorption devices during collapse processes. In
those tasks, in addition to the integration procedure on material point level as described in this paper,
the contact problem between consecutive buckles during the elastoplastic folding may require further
improvement.
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Fig. 12. Comparison of temperature increases of a box column and a cylindrical shell both for point A of the load—displacement curve.
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